1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
use crate::wgpu_ext::*;

/////////////////////////////////////////////////////////////////////////////
// struct Sprite
/////////////////////////////////////////////////////////////////////////////

/// A renderable region of a texture.
///
/// Multiple sprites can share a single texture. Sprites can either be built using
/// [`crate::SpriteBuilder`], or [`SpriteAtlasBuilder`].
///
/// Use [`crate::SpriteRenderCommand`] for access to all supported paramters when rendering
/// sprites, or use [`WGPUSprite::render_at`] to specify only a location and use default
/// arguments for everything else.
///
/// Sprites store a reference to the [`Renderer`] which built it, which will keep
/// the renderer alive as long as the sprite is alive.
///
/// # Example
///
/// ```no_run
/// # use riddle::{common::Color, image::*, platform::*, renderer::*, math::*, *};
/// # fn main() -> Result<(), RiddleError> {
/// # let rdl =  RiddleLib::new()?;
/// # let window = WindowBuilder::new().build(rdl.context())?;
/// let renderer = Renderer::new_from_window(&window)?;
///
/// // Load an image and create a sprite from it
/// let png_bytes = include_bytes!("../../../example_assets/image.png");
/// let img = Image::load(&png_bytes[..], ImageFormat::Png)?;
/// let sprite = SpriteBuilder::new(img).build(&renderer)?;
///
/// // Render the sprite at the top left corner of the screen
/// let mut render_ctx = renderer.begin_render()?;
/// render_ctx.clear(Color::WHITE);
/// sprite.render_at(&mut render_ctx, vec2(0.0, 0.0))?;
/// render_ctx.present()?;
/// # Ok(()) }
/// ```
pub struct WGPUSprite<Device: WGPUDevice> {
    renderer: WGPURendererHandle<Device>,
    texture: WGPUTextureHandle,
    source_rect: Rect<f32>,
}

impl<Device: WGPUDevice> WGPUSprite<Device> {
    /// Construct a new sprite from an image. The image contents are copied to a texture
    /// in RGBA8 format. The entire image will be used
    pub(crate) fn new_from_image(
        renderer: &WGPURenderer<Device>,
        img: image::Image,
        mag_filter: FilterMode,
        min_filter: FilterMode,
    ) -> Result<Self> {
        let texture = renderer.wgpu_device().with_device_info(|info| {
            WGPUTexture::from_image(
                info.device,
                info.queue,
                img,
                mag_filter,
                min_filter,
                TextureType::Plain,
            )
        })?;
        Self::from_texture(renderer, &texture)
    }

    pub(crate) fn from_texture(
        renderer: &WGPURenderer<Device>,
        texture: &WGPUTexture,
    ) -> Result<Self> {
        let dimensions = texture.dimensions.convert();
        Self::from_texture_with_bounds(
            renderer,
            texture,
            Rect {
                location: Vector2 { x: 0.0, y: 0.0 },
                dimensions,
            },
        )
    }

    #[allow(clippy::unnecessary_wraps)]
    pub(crate) fn from_texture_with_bounds(
        renderer: &WGPURenderer<Device>,
        texture: &WGPUTexture,
        source_rect: Rect<f32>,
    ) -> Result<Self> {
        Ok(WGPUSprite {
            renderer: renderer.clone_handle(),
            texture: texture.clone_handle(),
            source_rect,
        })
    }

    /// Build a sprite that shares the same underlying texture but represents a different portion
    /// of the texture.
    ///
    /// # Arguments
    ///
    /// * **source_rect** - The portion of the texture that the new sprite will render, relative to
    ///                     the current sprite's bounds. The bounds of the output sprite will be
    ///                     the intersection of the sprite's rect and the source_rect, so the dimensions
    ///                     of the output sprite may not match the `source_rect` dimensions.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use riddle::{common::Color, image::*, platform::*, renderer::*, math::*, *};
    /// # fn main() -> Result<(), RiddleError> {
    /// # let rdl =  RiddleLib::new()?; let window = WindowBuilder::new().build(rdl.context())?;
    /// let renderer = Renderer::new_from_window(&window)?;
    ///
    /// // Load an image and create a sprite from it
    /// let img = Image::new(100, 100);
    /// let sprite = SpriteBuilder::new(img).build(&renderer)?;
    ///
    /// // Take a portion of the sprite as a new sprite.
    /// let subsprite = sprite.subsprite(&Rect::new(vec2(75.0, 75.0), vec2(50.0, 50.0)));
    ///
    /// // The subsprite dimensions will be the size of the intersection between the
    /// // source sprite and the new bounds.
    /// assert_eq!(vec2(25.0, 25.0), subsprite.dimensions());
    /// # Ok(()) }
    /// ```
    pub fn subsprite(&self, source_rect: &Rect<f32>) -> Self {
        let mut translated_source = source_rect.clone();
        translated_source.location += self.source_rect.location;

        WGPUSprite {
            renderer: self.renderer.clone(),
            texture: self.texture.clone(),
            source_rect: self
                .source_rect
                .intersect(&translated_source)
                .unwrap_or_else(|| Rect::new(self.source_rect.location, vec2(0.0, 0.0))),
        }
    }

    pub(crate) fn render(
        &self,
        render_ctx: &mut impl RenderContext,
        args: &SpriteRenderCommand,
    ) -> Result<()> {
        let rot: glam::Mat2 = glam::Mat2::from_angle(args.angle);
        let Vector2 {
            x: tex_width,
            y: tex_height,
        } = self.texture.dimensions;

        let location: glam::Vec2 = args.location.into();
        let pivot: glam::Vec2 = args.pivot.into();

        let scale = glam::Mat2::from_scale(args.scale.into());

        let pos_topleft = glam::vec2(0.0, 0.0) - pivot;
        let pos_topright = pos_topleft + glam::vec2(self.source_rect.dimensions.x, 0.0);
        let pos_bottomleft = pos_topleft + glam::vec2(0.0, self.source_rect.dimensions.y);
        let pos_bottomright = pos_bottomleft + glam::vec2(self.source_rect.dimensions.x, 0.0);

        let uv_top = self.source_rect.location.y / (tex_height as f32);
        let uv_left = self.source_rect.location.x / (tex_width as f32);
        let uv_bottom = uv_top + (self.source_rect.dimensions.y / (tex_height as f32));
        let uv_right = uv_left + (self.source_rect.dimensions.x / (tex_width as f32));

        let color_arr: [f32; 4] = args.diffuse_color.clone().into();

        let vertex_data = [
            Vertex::ptc(
                location + (rot * (scale * pos_topleft)),
                [uv_left, uv_top],
                &color_arr,
            ),
            Vertex::ptc(
                location + (rot * (scale * pos_bottomleft)),
                [uv_left, uv_bottom],
                &color_arr,
            ),
            Vertex::ptc(
                location + (rot * (scale * pos_bottomright)),
                [uv_right, uv_bottom],
                &color_arr,
            ),
            Vertex::ptc(
                location + (rot * (scale * pos_topright)),
                [uv_right, uv_top],
                &color_arr,
            ),
        ];

        let index_data: &[u16] = &[1, 2, 0, 2, 0, 3];

        let renderable = WGPURenderableDesc {
            texture: self.texture.clone(),
            shader: self.renderer.standard_res().default_shader.clone(),
            verts: &vertex_data[..],
            indices: index_data,
        };

        render_ctx.render_internal(&renderable)
    }

    /// Utility function to simply render the sprite at a given location
    ///
    /// This is equivalent to `SpriteRenderCommand::new(location).render(&mut ctx, &sprite)?;`.
    /// See [`SpriteRenderCommand`] for how to render the sprite with more
    /// control.
    pub fn render_at<P: Into<Vector2<f32>>>(
        &self,
        render_ctx: &mut impl RenderContext,
        location: P,
    ) -> Result<()> {
        self.render(
            render_ctx,
            &SpriteRenderCommand {
                location: location.into(),
                ..Default::default()
            },
        )
    }

    /// Get the dimensions of the sprite
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use riddle::{common::Color, image::*, platform::*, renderer::*, math::*, *};
    /// # fn main() -> Result<(), RiddleError> {
    /// # let rdl =  RiddleLib::new()?; let window = WindowBuilder::new().build(rdl.context())?;
    /// let renderer = Renderer::new_from_window(&window)?;
    ///
    /// // Load an image and create a sprite from it
    /// let img = Image::new(100, 100);
    /// let sprite = SpriteBuilder::new(img).build(&renderer)?;
    ///
    /// // The sprite dimensions will be the same of the source image
    /// assert_eq!(vec2(100.0, 100.0), sprite.dimensions());
    /// # Ok(()) }
    /// ```
    pub fn dimensions(&self) -> Vector2<f32> {
        self.source_rect.dimensions
    }
}