1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
use math::Vector2;
use platform::Window;

use crate::*;

/// A simple 2D sprite based renderer.
///
/// A renderer can be created for a Window and holds a reference to the window, which will
/// keep the window alive as long as the renderer is alive.
///
/// # Example
///
/// ```no_run
/// use riddle::{common::Color, platform::*, renderer::*, math::*, *};
/// fn main() -> Result<(), RiddleError> {
///     let rdl =  RiddleLib::new()?;
///     let window = WindowBuilder::new().build(rdl.context())?;
///
///     let renderer = Renderer::new_from_window(&window)?;
///
///     renderer.render(|render_ctx| {
///         render_ctx.clear(Color::RED)?;
///
///         // Change the current transform matrix, and draw a rect
///         render_ctx.set_transform(glam::Mat4::from_scale(glam::vec3(2.0, 2.0, 1.0)).into())?;
///         render_ctx.fill_rect(&Rect::new(vec2(0.0, 0.0), vec2(10.0, 10.0)), Color::GREEN)
///     })?;
///     Ok(())
/// }
/// ```
pub struct Renderer<Device: WGPUDevice> {
	pub(crate) internal: std::sync::Arc<RendererInternal<Device>>,
}

impl Renderer<WindowWGPUDevice> {
	/// Initialize a new Renderer, creating a WGPU device for the window.
	///
	/// # Example
	///
	/// ```no_run
	/// # use riddle::{common::Color, platform::*, renderer::*, math::*, *};
	/// # fn main() -> Result<(), RiddleError> {
	/// let rdl =  RiddleLib::new()?;
	/// let window = WindowBuilder::new().build(rdl.context())?;
	///
	/// let renderer = Renderer::new_from_window(&window)?;
	/// # Ok(()) }
	/// ```
	pub fn new_from_window(window: &Window) -> Result<Self> {
		let wgpu_device = WindowWGPUDevice::new(window)?;
		Self::new_from_device(wgpu_device)
	}
}

impl<Device: WGPUDevice> CommonRenderer for Renderer<Device> {
	type RenderContext = BufferedRenderer<Device, SwapChainFrameTarget<Device>>;
	type Sprite = Sprite<Device>;
	type Texture = Texture;
	type Shader = Shader;
	type SpriteFont = SpriteFont<Self>;

	fn dimensions(&self) -> Vector2<f32> {
		self.internal.wgpu_device.viewport_dimensions()
	}

	fn render<R, F>(&self, f: F) -> std::result::Result<R, RendererError>
	where
		F: FnOnce(&mut Self::RenderContext) -> std::result::Result<R, RendererError>,
	{
		let encoder = self.internal.wgpu_device.with_device_info(|info| {
			Ok(info
				.device
				.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None }))
		})?;

		let target = SwapChainFrameTarget::new(self, self.dimensions());
		let mut ctx = BufferedRenderer::new(target, encoder)?;

		let result = f(&mut ctx)?;

		ctx.present()?;

		Ok(result)
	}
}

impl<Device: WGPUDevice> Renderer<Device> {
	/// Get the frame dimensions as reported by the [`WGPUDevice`].
	///
	/// In the case of a default Window renderer, this will be the internal size of
	/// the window in logical units.
	///
	/// # Example
	///
	/// ```no_run
	/// # use riddle::{common::Color, platform::*, renderer::*, math::*, *};
	/// # fn main() -> Result<(), RiddleError> {
	/// let rdl =  RiddleLib::new()?;
	/// let window = WindowBuilder::new().dimensions(300, 400).build(rdl.context())?;
	///
	/// let renderer = Renderer::new_from_window(&window)?;
	///
	/// assert_eq!(vec2(300.0, 400.0), renderer.dimensions());
	/// # Ok(()) }
	/// ```
	pub fn dimensions(&self) -> Vector2<f32> {
		self.internal.wgpu_device.viewport_dimensions()
	}

	pub(crate) fn standard_res(&self) -> &StandardResources {
		&self.internal.standard_res
	}

	pub fn wgpu_device(&self) -> &Device {
		&self.internal.wgpu_device
	}

	/// Or the renderer can be built on top of existing WGPU contexts, to allow the simple
	/// renderer to be used on top of custom renderers.
	pub fn new_from_device(wgpu_device: Device) -> Result<Self> {
		let internal = RendererInternal::new(wgpu_device)?;
		Ok(Self {
			internal: internal.into(),
		})
	}
}

impl<D: WGPUDevice> Clone for Renderer<D> {
	fn clone(&self) -> Self {
		Self {
			internal: self.internal.clone(),
		}
	}
}

#[doc(hidden)]
#[derive(Clone)]
pub struct StandardResources {
	pub(super) default_shader: Shader,
	pub(super) white_tex: Texture,
}

pub(crate) struct RendererInternal<D: WGPUDevice> {
	wgpu_device: D,
	standard_res: StandardResources,
}

impl<D: WGPUDevice> RendererInternal<D> {
	/// Or the renderer can be built on top of existing WGPU contexts, to allow the simple
	/// renderer to be used on top of custom renderers.
	fn new(wgpu_device: D) -> Result<Self> {
		let (default_shader, white_tex) = wgpu_device.with_device_info(|info| {
			let wgsl = include_bytes!("shaders/default.wgsl");
			let sprite_shader = Shader::from_readers(
				info.device,
				std::io::Cursor::new(&wgsl[..]),
				wgpu::PrimitiveTopology::TriangleList,
			)?;

			let mut white_img = image::Image::new(1, 1);
			white_img.set_pixel([0, 0], Color::from([0xFF; 4]));
			let white_tex = Texture::from_image(
				info.device,
				info.queue,
				&white_img,
				FilterMode::Nearest,
				FilterMode::Nearest,
				TextureType::Plain,
			)?;

			Ok((sprite_shader, white_tex))
		})?;

		let standard_res = StandardResources {
			default_shader,
			white_tex,
		};

		Ok(Self {
			wgpu_device,
			standard_res,
		})
	}
}